
BackboneJS

BackboneJS is a light weight JavaScript library that allows to develop and structure

client side applications that run in a web browser. It offers MVC framework which

abstracts data into models, DOM (Document Object Model) into views and bind these

two using events. This tutorial covers most of the topics required for a basic

understanding of BackboneJS and to get a feel of how it works.

BackboneJS is a lightweight JavaScript library that allows to develop and

structure the client side applications that run in a web browser. It offers MVC

framework which abstracts data into models, DOM into views and bind these

two using events.

History − BackboneJS was developed by Jeremy Ashkenas and was initially

released on October 13th, 2010.

When to use Backbone

 Consider you are creating an application with numerous lines of code

using JavaScript or jQuery. In this application, if you −

o add or replace DOM elements to the application or

o make some requests or

o show animation in the application or

o add more number of lines to your code,

then your application might become complicated.

 If you want a better design with less code, then it is better to use the

BackboneJS library that provides good functionality, is well organized and

in a structured manner for developing your application.

 BackboneJS communicates via events; this ensures that you do not mess

up the application. Your code will be cleaner, nicer and easy to maintain.

Features

The following are a list of features of BackboneJS −

 BackboneJS allows developing of applications and the frontend in a much

easier way by using JavaScript functions.

 BackboneJS provides various building blocks such as models, views,

events, routers and collections for assembling the client side web

applications.

 When a model changes, it automatically updates the HTML of your

application.

 BackboneJS is a simple library that helps in separating business and user

interface logic.

 It is free and open source library and contains over 100 available

extensions.

 It acts like a backbone for your project and helps to organize your code.

 It manages the data model which includes the user data and displays

that data at the server side with the same format written at the client

side.

 BackboneJS has a soft dependency with jQuery and a hard dependency

with Underscore.js.

 It allows to create client side web applications or mobile applications in a

wellstructured and an organized format.

BackboneJS - Environment Setup

BackboneJS is very easy to setup and work. This chapter will discuss the

download and setup of the BackboneJS Library.

BackboneJS can be used in the following two ways −

 Downloading UI library from its official website.

 Downloading UI library from CDNs.

Downloading the UI library from its official website

When you open the link http://backbonejs.org/, you will get to see a

screenshot as shown below −

http://backbonejs.org/

As you can see, there are three options for download of this library −

 Development Version − Right click on this button and save as and you

get the full source JavaScript library.

 Production Version − Right click on this button and save as and you get

the Backbone-min.js library file which is packed and gzipped.

 Edge Version − Right click on this button and save as and you get an

unreleased version, i.e., development is going on; hence you need to use

it at your own risk.

Dependencies

BackboneJS depends on the following JavaScript files −

 Underscore.js − This is the only hard dependency which needs to be

included. You can get it from here.

 jQuery.js − Include this file for RESTful persistence, history support via

Backbone.Router and DOM manipulation with Backbone.View. You can get

it from here.

 json2.js − Include this file for older Internet Explorer support. You can get

it from here.

Download UI Library from CDNs

A CDN or Content Delivery Network is a network of servers designed to serve

files to users. If you use a CDN link in your web page, it moves the

responsibility of hosting files from your own servers to a series of external

ones. This also offers an advantage that if the visitor to your webpage has

http://underscorejs.org/
http://jquery.com/
https://github.com/douglascrockford/JSON-js

already downloaded a copy of BackboneJS from the same CDN, it won't have

to be re-downloaded.

As said above, BackboneJS has a dependency of the following JavaScript −

 jQuery

 Underscore

Hence CDN for all the above is as follows −

<script type = "text/javascript"

 src = "https://ajax.googleapis.com/ajax/libs/jquery/1.5.2/jquery.min.js"></script>

<script type = "text/javascript"

 src = "https://ajax.cdnjs.com/ajax/libs/underscore.js/1.1.4/underscore-min.js"></script>

<script type = "text/javascript"

 src = "https://ajax.cdnjs.com/ajax/libs/backbone.js/0.3.3/backbone-min.js"></script>

Note − We are using the CDN versions of the library throughout this tutorial.

Example

Let's create a simple example using BackboneJS.

<!DOCTYPE html>

<html>

 <head>

 <meta charset = "UTF-8">

 <meta http-equiv = "X-UA-Compatible" content = "IE = edge,chrome = 1">

 <title>Hello World using Backbone.js</title>

 </head>

 <body>

 <!-- ========= -->

 <!-- Your HTML -->

 <!-- ========= -->

 <div id = "container">Loading...</div>

 <!-- ========= -->

 <!-- Libraries -->

 <!-- ========= -->

 <script src = "https://code.jquery.com/jquery-2.1.3.min.js"

 type = "text/javascript"></script>

 <script src = "https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.3.3/underscoremin.js"

 type = "text/javascript"></script>

 <script src = "https://cdnjs.cloudflare.com/ajax/libs/backbone.js/0.9.2/backbone-min.js"

 type = "text/javascript"></script>

 <!-- =============== -->

 <!-- Javascript code -->

 <!-- =============== -->

 <script type = "text/javascript">

 var AppView = Backbone.View.extend ({

 // el - stands for element. Every view has an element associated with HTML

content, will be rendered.

 el: '#container',

 // It's the first function called when this view is instantiated.

 initialize: function() {

 this.render();

 },

 // $el - it's a cached jQuery object (el), in which you can use jQuery functions to

push content.

 //Like the Hello TutorialsPoint in this case.

 render: function() {

 this.$el.html("Hello TutorialsPoint!!!");

 }

 });

 var appView = new AppView();

 </script>

 </body>

</html>

The code comments are self-explanatory. A few more details are given below −

There's a html code at the start of body tag

<div id = "container">Loading...</div>

This prints Loading...

Next, we have added the following CDNs

<script src = "https://code.jquery.com/jquery-2.1.3.min.js"

 type = "text/javascript"></script>

<script src = "https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.3.3/underscore-min.js"

 type = "text/javascript"></script>

<script src = "https://cdnjs.cloudflare.com/ajax/libs/backbone.js/0.9.2/backbone-min.js"

 type = "text/javascript"></script>

Next, we have the following script −

var AppView = Backbone.View.extend ({

 // el - stands for element. Every view has an element associated with HTML content,

 //will be rendered.

 el: '#container',

 // It's the first function called when this view is instantiated.

 initialize: function() {

 this.render();

 },

 // $el - it's a cached jQuery object (el), in which you can use jQuery functions to push

content.

 //Like the Hello World in this case.

 render: function() {

 this.$el.html("<h1>Hello TutorialsPoint!!!</h1>");

 }

});

var appView = new AppView();

The comments are self-explanatory. In the last line, we are initializing new

AppView(). This will print the "Hello TutorialsPoint" in the div with id =

"container"

Save this page as myFirstExample.html. Open this in your browser and the

screen will show the following text.

BackboneJS - Applications

The BackboneJS gives a structure to the web applications that allows to

separate business logic and user interface logic. In this chapter, we are going

to discuss the architectural style of the BackboneJS application for

implementing user interfaces. The following diagram shows the architecture of

BackboneJS −

The architecture of BackboneJS contains the following modules −

 HTTP Request

 Router

 View

 Events

 Model

 Collection

 Data Source

Let us now discuss all the modules in detail.

HTTP Request

The HTTP client sends a HTTP request to a server in the form of a request

message where web browsers, search engines, etc., acts like HTTP clients. The

user requests for a file such as documents, images, etc., using the HTTP

request protocol. In the above diagram, you could see that the HTTP client

uses the router to send the client request.

Router

It is used for routing the client side applications and connects them to actions

and events using URL's. It is a URL representation of the application's objects.

This URL is changed manually by the user. The URL is used by the backbone

so that it can understand what application state to be sent or present to the

user.

The router is a mechanism which can copy the URL's to reach the view. The

Router is required when web applications provide linkable, bookmarkable, and

shareable URL's for important locations in the app.

In the above architecture, the router sending an HTTP request to the View. It is

a useful feature when an application needs routing capability.

View

BackboneJS views are responsible for how and what to display from our

application and they don't contain HTML markup for the application. It specifies

an idea behind the presentation of the model's data to the user. Views are

used to reflect "how your data model looks like".

The view classes do not know anything about the HTML and CSS and each

view can be updated independently when the model changes without reloading

the whole page. It represents the logical chunk of the UI in the DOM.

As shown in the above architecture, the View represents the user interface

which is responsible for displaying the response for the user request done by

using the Router.

Events

Events are the main parts of any application. It binds the user's custom events

to an application. They can be mixed into any object and are capable of

binding and triggering custom events. You can bind the custom events by using

the desired name of your choice.

Typically, events are handled synchronously with their program flow. In the

above architecture, you could see when an event occurs, it represents the

model's data by using the View.

Model

It is the heart of the JavaScript application that retrieves and populates the

data. Models contain data of an application, logic of the data and represents

the basic data object in the framework.

Models represents business entities with some business logic and business

validations. They are mainly used for data storage and business logic. Models

can be retrieved from and saved to data storage. A Model takes the HTTP

request from the Events passed by the View using the Router and synchronizes

the data from the database and sends the response back to the client.

Collection

A Collection is a set of models which binds events, when the model has been

modified in the collection. The collection contains a list of models that can be

processed in the loop and supports sorting and filtering. When creating a

collection, we can define what type of model that collection is going to have

along with the instance of properties. Any event triggered on a model will also

trigger on the collection in the model.

It also takes the request from the view, bind events and synchronizes the data

with the requested data and sends the response back to the HTTP client.

Data Source

It is the connection set up to a database from a server and contains the

information which is requested from the client. The flow of the BackboneJS

architecture can be described as shown in the following steps −

 A User requests for the data using the router, which routes the

applications to the events using the URL's.

 The view represents the model's data to the user.

 The model and collection retrieves and populates the data from the

database by binding custom events.

In the next chapter, we will understand the significance of Events in

BackboneJS.

BackboneJS - Events

Events are capable of binding objects and trigger custom events i.e. you can

bind the custom events by using the desired name of our choice.

The following table lists down all the methods which you can use to manipulate

the BackboneJS-Events −

S.No. Methods & Description

1

on

It binds an event to an object and executes the callback whenever an

event is fired.

2
off

It removes callback functions or all events from an object.

3
trigger

It invokes the callback functions for the given events.

4

once

It extends the backbone.Model class while creating your own backbone

Model.

5
listenTo

It informs one object to listen to an event on another object.

6
stopListening

It can be used to stop listening to events on the other objects.

7

listenToOnce

It causes the listenTo occur only once before the callback function is

being removed.

Catalog of Built-in Events

BackboneJS allows the use of global events wherever necessary in your

application. It contains some of the built-in events with arguments as shown in

the following table −

https://www.tutorialspoint.com/backbonejs/event_on.htm
https://www.tutorialspoint.com/backbonejs/event_off.htm
https://www.tutorialspoint.com/backbonejs/event_trigger.htm
https://www.tutorialspoint.com/backbonejs/event_once.htm
https://www.tutorialspoint.com/backbonejs/event_listento.htm
https://www.tutorialspoint.com/backbonejs/event_stoplistening.htm
https://www.tutorialspoint.com/backbonejs/event_listentoonce.htm

S.No. Events & Description

1
"add"(model, collection, options)

It used when a model is added to the collection.

2
"remove"(model, collection, options)

It removes a model from the collection.

3
"reset"(collection, options)

It is used to reset the collection content.

4
"sort"(collection, options)

It is used when a collection needs to resorted.

5
"change"(model, options)

It is used when changes are to be made to a model's attributes.

6
"change:[attribute]"(model, value, options)

It is used when there is an update in an attribute.

7
"destroy"(model, collection, options)

It fires when the model is destroyed.

8
"request"(model_or_collection, xhr, options)

It is used when a model or a collection starts requesting to the server.

9

"sync"(model_or_collection, resp, options)

It is used when a model or a collection is synced successfully with the

server.

10
"error"(model_or_collection, resp, options)

It activates when there is an error in requesting to the server.

11
"invalid"(model, error, options)

When there is a fail in model validation, it returns invalid.

12
"route:[name]"(params)

When there is a specific route match, this event can be used.

13
"route"(route,params)

It is used when there is a match with any route.

14
"route"(router, route, params)

It is used by history when there is a match with any route.

15

"all"

It fires for all the triggered events by the passing event name as the first

argument.

BackboneJS - Model

Models contain dynamic data and its logic. Logic such as conversions,

validations, computed properties and access control fall under the Model

category. As it contains all the application data, a model is also called as the

heart of JavaScript application.

The following table lists down all the methods which you can use to manipulate

the BackboneJS-Model −

S.No. Methods & Description

1

extend

It extends the backbone.Model class while creating your own backbone

Model.

2

initialize

When a model instance is created, the class's constructor gets called and

it is invoked by defining the initialize function when the model is created.

3
get

It gets the value of an attribute on the model.

4
set

It sets the value of an attribute in the model.

5 escape

https://www.tutorialspoint.com/backbonejs/model_extend.htm
https://www.tutorialspoint.com/backbonejs/model_initialize.htm
https://www.tutorialspoint.com/backbonejs/model_get.htm
https://www.tutorialspoint.com/backbonejs/model_set.htm
https://www.tutorialspoint.com/backbonejs/model_escape.htm

It is like the get function, but returns the HTML-escaped version of a

model's attribute.

6

has

Returns true, if attribute value defined with non-null value or non-undefined

value.

7
unset

It removes an attribute from a backbone model.

8
clear

Removes all attributes, including id attribute from a backbone model.

9

id

It uniquely identifies the model entity, that might be manually set when a

model is created or populated or when a model is saved on the server.

10

idAttribute

Defines a model's unique identifier which contains the name of the

member of the class which will be used as id.

11

cid

It is an auto generated client id by Backbone which uniquely identifies the

model on the client.

12
attributes

Attributes defines property of a model.

13

changed

Changes all the attributes that have changed after setting the attributes

using the set() method.

14

defaults

Sets a default value to a model, that means if the user doesn't specify

any data, the model won't fall with an empty property.

15
toJSON

Returns a copy of the attributes as an object for JSON stringification.

https://www.tutorialspoint.com/backbonejs/model_has.htm
https://www.tutorialspoint.com/backbonejs/model_unset.htm
https://www.tutorialspoint.com/backbonejs/model_clear.htm
https://www.tutorialspoint.com/backbonejs/model_id.htm
https://www.tutorialspoint.com/backbonejs/model_idattribute.htm
https://www.tutorialspoint.com/backbonejs/model_cid.htm
https://www.tutorialspoint.com/backbonejs/model_attributes.htm
https://www.tutorialspoint.com/backbonejs/model_changed.htm
https://www.tutorialspoint.com/backbonejs/model_defaults.htm
https://www.tutorialspoint.com/backbonejs/model_tojson.htm

16

sync

It is used to communicate with the server and to represent the state of a

model.

17
fetch

Accept the data from the server by delegating sync() method in the model.

18

save

Saves the data of the model by delegating to sync() method which reads

and saves the model every time when a Backbone calls it.

19

destroy

Destroys or removes the model from the server by using the

Backbone.sync method which delegates the HTTP "delete" request.

20

validate

If the input is invalid, it returns a specified error message or if the input is

valid, it doesn't specify anything and simply displays the result.

21

validationError

It displays the validation error, if the validation fails or after the invalid

event is triggered.

22

isValid

It checks the model state by using the validate() method and also checks

validations for each attribute.

23

url

It is used for the instance of the model and returns the url to where the

model's resource is located.

24
urlRoot

Enables the url function by using the model id to generate the URL.

25

parse

Returns the model's data by passing through the response object and

represents the data in the JSON format.

https://www.tutorialspoint.com/backbonejs/model_sync.htm
https://www.tutorialspoint.com/backbonejs/model_fetch.htm
https://www.tutorialspoint.com/backbonejs/model_save.htm
https://www.tutorialspoint.com/backbonejs/model_destroy.htm
https://www.tutorialspoint.com/backbonejs/model_validate.htm
https://www.tutorialspoint.com/backbonejs/model_validationerror.htm
https://www.tutorialspoint.com/backbonejs/model_isvalid.htm
https://www.tutorialspoint.com/backbonejs/model_url.htm
https://www.tutorialspoint.com/backbonejs/model_urlroot.htm
https://www.tutorialspoint.com/backbonejs/model_parse.htm

26

clone

It is used to create a deep copy of a model or to copy one model object

to another object.

27
hasChanged

Returns true, if the attribute gets changed since the last set.

28
isNew

Determines whether the model is a new or an existing one.

29

changedAttributes

It returns the model's attributes that have changed since the last set or

else becomes false, if there are no attributes.

30
previous

It determines the previous value of the changed attribute.

31
previousAttributes

Returns the state of the all the attributes prior to the last change event.

Underscore Methods

There are six Underscore.js methods which provides their functionality to be

used on the Backbone.Model.

S.No. Methods & Description

1
_.keys(object)

It is used to access the object's enumerable properties.

2
_.values(object)

It is used to get values of object's properties.

3
_.pairs(object)

It describes the object's properties in terms of key value pairs.

4 _.invert(object)

https://www.tutorialspoint.com/backbonejs/model_clone.htm
https://www.tutorialspoint.com/backbonejs/model_haschanged.htm
https://www.tutorialspoint.com/backbonejs/model_isnew.htm
https://www.tutorialspoint.com/backbonejs/model_changedattributes.htm
https://www.tutorialspoint.com/backbonejs/model_previous.htm
https://www.tutorialspoint.com/backbonejs/model_previousattributes.htm

It returns the copy of object, in which keys have become the values and

vice versa.

5
_.pick(object, *keys)

It returns the copy of object and indicates which keys to pick up.

6
_.omit(object, *keys)

It returns the copy of object and indicates which keys to omit.

BackboneJS - Collection

Collections are ordered sets of Models. We just need to extend the backbone's

collection class to create our own collection. Any event that is triggered on a

model in a collection will also be triggered on the collection directly. This

allows you to listen for changes to specific attributes in any model in a

collection.

The following table lists down all the methods which you can use to manipulate

the BackboneJS-Collection −

S.No. Methods & Description

1
extend

Extends the backbone's collection class to create a collection.

2

model

To specify the model class, we need to override the model property of the

collection class.

3

initialize

When a model instance is created, it is invoked by defining the initialize

function when the collection is created.

4
models

Array of models which are created inside the collection.

5
toJSON

Returns the copy of the attributes of a model using the JSON format in

https://www.tutorialspoint.com/backbonejs/coll_extend.htm
https://www.tutorialspoint.com/backbonejs/coll_model.htm
https://www.tutorialspoint.com/backbonejs/coll_initialize.htm
https://www.tutorialspoint.com/backbonejs/coll_models.htm
https://www.tutorialspoint.com/backbonejs/coll_tojson.htm

the collection.

6

sync

It represents the state of the model and uses the Backbone.sync to

display the state of the collection.

7
add

Add a model or array of models to the collection.

8
remove

Removes a model or array of models from the collection.

9

reset

It resets the collection and populates with new array of models or will

empty the entire collection.

10

set

It is used to update the collection with a set of items in a model. If any

new model is found, the items will be added to that model.

11
get

It is used to retrieve the model from a collection by using the idor cid.

12
at

Retrieve the model from a collection by using specified index.

13

push

It is similar to the add() method which takes the array of models and

pushes the models to the collection.

14

pop

It is similar to the remove() method which takes the array of models and

removes the models from the collection.

15
unshift

Add a specified model at the beginning of a collection.

16 shift

https://www.tutorialspoint.com/backbonejs/coll_sync.htm
https://www.tutorialspoint.com/backbonejs/coll_add.htm
https://www.tutorialspoint.com/backbonejs/coll_remove.htm
https://www.tutorialspoint.com/backbonejs/coll_reset.htm
https://www.tutorialspoint.com/backbonejs/coll_set.htm
https://www.tutorialspoint.com/backbonejs/coll_get.htm
https://www.tutorialspoint.com/backbonejs/coll_at.htm
https://www.tutorialspoint.com/backbonejs/coll_push.htm
https://www.tutorialspoint.com/backbonejs/coll_pop.htm
https://www.tutorialspoint.com/backbonejs/coll_unshift.htm
https://www.tutorialspoint.com/backbonejs/coll_shift.htm

It removes the first item from the collection.

17
slice

Displays the shallow copy of the elements from the collection model.

18
length

Counts the number of models in the collection.

19
comparator

It is used to sort the items in the collection.

20

sort

Sorts the items in the collection and uses comparator property in order to

sort the items.

21
pluck

Retrieves the attributes from the model in the collection.

22

where

It is used to display the model by using the matched attribute in the

collection.

23
findWhere

It returns the model, that matches the specified attribute in the collection.

24

url

It creates an instance of the collection and returns where resources are

located.

25

parse

Returns the collection's data by passing through the response object and

represents the data in JSON format.

26
clone

It returns the shallow copy of the specified object.

27
fetch

It extracts the data from the model in the collection using the sync

https://www.tutorialspoint.com/backbonejs/coll_slice.htm
https://www.tutorialspoint.com/backbonejs/coll_length.htm
https://www.tutorialspoint.com/backbonejs/coll_comparator.htm
https://www.tutorialspoint.com/backbonejs/coll_sort.htm
https://www.tutorialspoint.com/backbonejs/coll_pluck.htm
https://www.tutorialspoint.com/backbonejs/coll_where.htm
https://www.tutorialspoint.com/backbonejs/coll_findwhere.htm
https://www.tutorialspoint.com/backbonejs/coll_url.htm
https://www.tutorialspoint.com/backbonejs/coll_parse.htm
https://www.tutorialspoint.com/backbonejs/coll_clone.htm
https://www.tutorialspoint.com/backbonejs/coll_fetch.htm

method.

28
create

It creates a new instance of the model in the collection.

Underscore Methods

The following table lists down the Underscore.js methods which provides their

functionality to be used on the Backbone.Collection.

S.No. Methods & Description

1
_.each(list, iteratee, [context])

Iterates each of the elements in the collection using the iteratee function.

2

_.map(list, iteratee, [context])

It maps each value and displays them in a new array of values using the

iteratee function.

3

_.reduce(list, iteratee, memo, [context])

It reduces the list of values into a single value and it also known as inject

and foldl.

4
_.reduceRight(list, iteratee, memo, [context])

It is the right associative version of reduce.

5

_.find(list, predicate, [context])

It finds each value and returns the first one which passes the predicate or

test.

6

_.filter(list, predicate, [context])

It filters each value and returns the array of values which passes the

predicate or test.

7

_.reject(list, predicate, [context])

It returns the rejected elements in the list which do not pass the predicted

values.

https://www.tutorialspoint.com/backbonejs/coll_create.htm

8
_.every(list, predicate, [context])

It returns true, if elements in the list pass the predicted values.

9
_.some(list, predicate, [context])

It returns true, if elements in the list pass the predicted values.

10
_.contains(list, value, [fromIndex])

It returns true, if a value is present in the list.

11
_.invoke(list, methodName, *arguments)

It invokes the method name using methodName() on each value in the list.

12
_.max(list, [iteratee], [context])

It specifies the maximum value in the list.

13
_.min(list, [iteratee], [context])

It specifies the minimum value in the list.

14

_.sortBy(list, [iteratee], [context])

It returns the sorted elements in the ascending order by using iteratee in

the list.

15

_.groupBy(list, [iteratee], [context])

It divides the collection values into the sets, grouped by using the iteratee

in the list.

16
_.shuffle(list)

It returns the shuffled copy of the list.

17
_.toArray(list)

It defines an array of the list.

18
_.size(list)

It defines the number of values in the list.

19
_.first(array, [n])

It specifies the first element of the array in the list.

20
_.initial(array, [n])

It returns everything, but specifies the last entry of the array in the list.

21
_.last(array, [n])

It specifies the last element of the array in the list.

22
_.rest(array, [index])

It defines the remaining elements in the array.

23
_.without(array, *values)

It returns the values of all instances which are removed in the list.

24

_.indexOf(array, value, [isSorted])

It returns the value if it is found at a specified index or returns -1, if it is

not found.

25

_.indexOf(array, value, [fromIndex])

It returns the last occurrence of the value in the array or returns -1, if it

is not found.

26
_.isEmpty(object)

It returns true if there are no values in the list.

27
_.chain(obj)

It returns a wrapped object.

BackboneJS - Router

Router is used for routing the client side applications and defines the URL

representation of the application's object. A router is required when web

applications provide linkable, bookmarkable and shareable URL's for important

locations in the app.

The following table lists down the methods which can be used to manipulate

the BackboneJS - Router −

S.No. Methods & Description

1 extend

https://www.tutorialspoint.com/backbonejs/router_extend.htm

It extends the backbone's router class.

2

routes

It defines the URL representation of applications objects.

3

initialize

It creates a new constructor for the router instantiation.

4

route

It creates a route for the router.

5

navigate

It is used to update the URL in the applications.

6

execute

It is used when a route matches its corresponding callback.

BackboneJS - History

It keeps a track of the history, matches the appropriate route, fires callbacks to

handle events and enables the routing in the application.

start

This is the only method which can be used to manipulate the BackboneJS-

History. It starts listening to routes and manages the history for bookmarkable

URL's.

Syntax

Backbone.history.start(options)

Parameters

options − The options include the parameters such as pushState and

hashChange used with history.

Example

<!DOCTYPE html>

<html>

https://www.tutorialspoint.com/backbonejs/router_routes.htm
https://www.tutorialspoint.com/backbonejs/router_initialize.htm
https://www.tutorialspoint.com/backbonejs/router_route.htm
https://www.tutorialspoint.com/backbonejs/router_navigate.htm
https://www.tutorialspoint.com/backbonejs/router_execute.htm

 <head>

 <title>History Example</title>

 <script src = "https://code.jquery.com/jquery-2.1.3.min.js"

 type = "text/javascript"></script>

 <script src = "https://cdnjs.cloudflare.com/ajax/libs/underscore.js/1.8.2/underscore-min.js"

 type = "text/javascript"></script>

 <script src = "https://cdnjs.cloudflare.com/ajax/libs/backbone.js/1.1.2/backbone-min.js"

 type = "text/javascript"></script>

 </head>

 <script type = "text/javascript">

 //'Router' is a name of the router class

 var Router = Backbone.Router.extend ({

 //The 'routes' maps URLs with parameters to functions on your router

 routes: {

 "myroute" : "myFunc"

 },

 //'The function 'myFunc' defines the links for the route on the browser

 myFunc: function (myroute) {

 document.write(myroute);

 }

 });

 //'router' is an instance of the Router

 var router = new Router();

 //Start listening to the routes and manages the history for bookmarkable URL's

 Backbone.history.start();

 </script>

 <body>

 Route1

 Route2

 Route3

 </body>

</html>

Output

Let us carry out the following steps to see how the above code works −

 Save the above code in the start.htm file.

 Open this HTML file in a browser.

NOTE − The above functionality is related to the address bar. So, when you

open the above code in the browser, it will show the result as follows.

Click here for the demo

BackboneJS - Sync

It is used to persist the state of the model to the server.

The following table lists down the methods which can be used to manipulate

the BackboneJS-Sync −

S.No. Methods & Description

1

Backbone.sync

It persists the state of the model to the server.

2

Backbone.ajax

It defines the custom ajax function.

3

Backbone.emulateHTTP

If your web server does not support REST or HTTP approach, then turn on

the Backbone.emulateHTTP.

4

Backbone.emulateJSON

It is used to handle the requests encoded with application/json by setting

the method to true.

https://www.tutorialspoint.com/backbonejs/src/history/start.htm
https://www.tutorialspoint.com/backbonejs/sync_backbone-sync.htm
https://www.tutorialspoint.com/backbonejs/sync_backbone-emulatehttp.htm
https://www.tutorialspoint.com/backbonejs/sync_backbone-emulatejson.htm

	BackboneJS
	BackboneJS is a light weight JavaScript library that allows to develop and structure client side applications that run in a web browser. It offers MVC framework which abstracts data into models, DOM (Document Object Model) into views and bind these tw...
	When to use Backbone
	Features

	BackboneJS - Environment Setup
	Downloading the UI library from its official website
	Dependencies
	Download UI Library from CDNs
	Example

	BackboneJS - Applications
	HTTP Request
	Router
	View
	Events
	Model
	Collection
	Data Source

	BackboneJS - Events
	Catalog of Built-in Events

	BackboneJS - Model
	Underscore Methods

	BackboneJS - Collection
	Underscore Methods

	BackboneJS - Router
	BackboneJS - History
	start
	Syntax
	Parameters
	Example
	Output

	BackboneJS - Sync

